Absorption enhancement by matching the cross-section of plasmonic nanowires to the field structure of tightly focused beams.
نویسندگان
چکیده
Nanostructured materials, designed for enhanced light absorption, are receiving increased scientific and technological interest. In this paper we propose a physical criterion for designing the cross-sectional shape of plasmonic nanowires for improved absorption of a given tightly focused illumination. The idea is to design a shape which increases the matching between the nanowire plasmon resonance field and the incident field. As examples, we design nanowire shapes for two illumination cases: a tightly focused plane wave and a tightly focused beam containing a line singularity. We show that properly shaped and positioned silver nanowires that occupy a relatively small portion of the beam-waist area can absorb up to 65% of the total power of the incident beam.
منابع مشابه
IRWIN AND JOAN JACOBS CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES Absorption enhancement by matching the cross-section of plasmonic nanowires to the field structure of tightly focused beams
Localized surface plasmon resonance is characterized by a significant electric field component normal to some parts the surface. Shaping the surface to be normal to the direction of an incident electric field may increase the incident power coupling to the excited plasmonic mode, enhancing the absorption in lossy nanowires. In this work we perform a numerical analysis to investigate the depende...
متن کاملImproving the optical properties of thin film plasmonic solar cells of InP absorber layer using nanowires
In this paper, a thin-film InP-based solar cell designed and simulated. The proposed InP solar cell has a periodic array of plasmonic back-reflector, which consists of a silver layer and two silver nanowires. The indium tin oxide (ITO) layer also utilized as an anti-reflection coating (ARC) layer on top. The design creates a light-trapping structure by using a plasmonic back-reflector and an an...
متن کاملDual-band, Dynamically Tunable Plasmonic Metamaterial Absorbers Based on Graphene for Terahertz Frequencies
In this paper, a compact plasmonic metamaterial absorber for terahertz frequencies is proposed and simulated. The absorber is based on metamaterial graphene structures, and benefits from dynamically controllable properties of graphene. Through patterning graphene layers, plasmonic resonances are tailored to provide a dual band as well as an improved bandwidth absorption. Unit cell of the design...
متن کاملSolar cell efficiency enhancement using a hemisphere texture containing metal nanostructures
One major problem of the conventional solar cells is low conversion efficiency. In this work, we have proposed a new design including hemisphere texturing on top and metallic plasmonic nanostructure under the silicon layer to enhance the optical absorption inside the photosensitive layer. The finite-difference time-domain (FDTD) method has been used to investigate the interaction of light wi...
متن کاملOptical Chirality Enhancement in Twisted Arrays of Plasmonic Nano-rods
An important property of electromagnetic fields, which arises from the interaction between fields and chiral molecules, is called optical chirality. By enhancing this field property, while maintaining constant input power, we are able to increase absorption of circularly polarized light by chiral molecules of a certain handedness. This enhancement is achieved through the use of achiral plasmoni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 19 9 شماره
صفحات -
تاریخ انتشار 2011